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Figure 1. Typical micro-hydro installation.
Imperial Units
The equation for flow vs. static head and friction for a system that provides a

water jet used as the motive force for an impulse turbine is:
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where q is the flow rate in gals./min, N the number of nozzle (1 to 4), dx the
nozzles (0.25 to 1) diameter in inch, H the static head in feet, and Hg the total
friction loss in feet.

The friction loss Hg(q) is based on the Darcy/Weisback equation:
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where v, is the velocity in the pipe in ft/s, d, the diameter of the pipe in inch, L the
length of the pipe in feet and f the friction factor or parameter (non-dimensional).

The friction parameter is given by the Swamee-Jain equation:
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where ¢ is the RMS roughness of the surface in inches, and Re the Reynolds
number(non-dimensional).
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where v is the kinematic viscosity of the fluid, for water it is 1 centiStoke.
Velocity can be expressed as a function of flow:
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and the friction loss Hr(g) can then be expressed as:
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and if we define the following expression as K:
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then Hp(q) becomes:
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Normally to solve equation (1) we would create a function | call G and apply the
the Newton-Raphson iteration technique :
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however after some trials it became apparent that | could not get a convergence
for certain values of q and this is because the term Hr would sometimes get
larger than H and this would cause the iteration process to fail. It was suggested
by a gentleman called Torsten Hennig on the math forum alt.math.undergrad at
http://mathforum.org/kb/forum.jspa?forumID=56 that if | square both sides of
equation (1) | would eliminate the problem and this turned out to be the solution.

Equation (1) then becomes:
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and we create a function F:
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that we can solve using the Newton-Raphson iteration technique.

A value for q will be found that will converge if we modify the initial value with the
result of the calculation of the residue RES. In the case of the N-R technique the
residue is:
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and the value of q for successive iterations will be ¢, = ¢,.; — RES until the residue
is very small and close to zero (less than 1 x 107°)
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Here we make use of the derivative rule:
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and if we define the following expression as Ko:
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F(q) is the equation to be solved and must equal zero for the appropriate value of
g.
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and He is given by:
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We want to solve equation (2) for F(q) = 0 based on the values of the terms in
equations (3) and (4).

Using the N-R iteration technique we will need the values of df/dq and RES given
below.
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Metric Units
The equation for flow vs. static head and friction for a system that provides a

water jet used as the motive force for an impulse turbine is:
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where q is the flow rate in liters/min, N the number of nozzle (1 to 4), dx the
nozzles (0.25 to 1) diameter in millimeters, H the static head in meters, and Hr
the total friction loss in meters.

The friction loss Hg(q) is based on the Darcy/Weisback equation:
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where v, is the velocity in the pipe in m/s, d, the diameter of the pipe in mm, L
the length of the pipe in meter and f the friction factor or parameter (non-
dimensional).

The friction parameter is given by the Swamee-Jain equation:
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where ¢ is the RMS roughness of the surface in mm, and Re the Reynolds
number(non-dimensional).
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where v is the kinematic viscosity of the fluid, for water it is 1 centiStoke.
Velocity can be expressed as a function of flow:

_21.22x¢(L/min)

’ d(mm)?




therefore Re is:
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and the friction loss Hr(g) can then be expressed as:
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and if we define the following expression as K:
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Normally to solve equation (1) we would create a function | call G and apply the
the Newton-Raphson iteration technique :
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however after some trials it became apparent that | could not get a convergence
for certain values of q and this is because the term Hg would sometimes get
larger than H and this would cause the iteration process to fail. It was suggested
by a gentleman called Torsten Hennig on the math forum alt.math.undergrad at
http://mathforum.org/kb/forum.jspa?forumID=56 that if | square both sides of
equation (1) | would eliminate the problem and this turned out to be the solution.

Equation (1) then becomes:
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and we create a function F:
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that we can solve using the Newton-Raphson iteration technique.
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A value for q will be found that will converge if we modify the initial value with the
result of the calculation of the residue RES. In the case of the N-R technique the
residue is:
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and the value of q for successive iterations will be ¢, = g,.; — RES until the residue
is very small and close to zero (less than 1 x 10°)
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Here we make use of the derivative rule:
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and

F(q) is the equation to be solved and must equal zero for the appropriate value of
g.
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and He is given by:
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We want to solve equation (2) for F(q) = 0 based on the values of the terms in
equations (3) and (4).

Using the N-R iteration technique we will need the values of df/dq and RES given
below.
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