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Imperial Units 
 
The equation for flow vs. static head and friction for a system that provides a 
water jet used as the motive force for an impulse turbine is: 
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where q is the flow rate in gals./min, N the number of nozzle (1 to 4), dN the 
nozzles (0.25 to 1) diameter in inch, H the static head in feet, and HF the total 
friction loss in feet. 
 
The friction loss HF(q) is based on the Darcy/Weisback equation: 
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Figure 1. Typical micro-hydro installation. 



 2

 
 
where vp is the velocity in the pipe in ft/s, dp the diameter of the pipe in inch, L the 
length of the pipe in feet and f the friction factor or parameter (non-dimensional). 
 
The friction parameter is given by the Swamee-Jain equation: 
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where ε is the RMS roughness of the surface in inches, and Re the Reynolds 
number(non-dimensional). 
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where ν is the kinematic viscosity of the fluid, for water it is 1 centiStoke. 
 
Velocity can be expressed as a function of flow: 
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and the friction  loss HF(q) can then be expressed as: 
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and if we define the following expression as K1: 
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then HF(q) becomes: 
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or 
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Normally to solve equation (1) we would create a function I call G and apply the 
the Newton-Raphson iteration technique : 
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however after some trials it became apparent that I could not get a convergence 
for certain values of q and this is because the term HF would sometimes get 
larger than H and this would cause the iteration process to fail. It was suggested 
by a gentleman called Torsten Hennig on the math forum alt.math.undergrad at 
http://mathforum.org/kb/forum.jspa?forumID=56 that if I square both sides of 
equation (1) I would eliminate the problem and this turned out to be the solution. 
 
Equation (1) then becomes: 
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and we create a function F: 
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that we can solve using the Newton-Raphson iteration technique. 
 

A value for q will be found that will converge if we modify the initial value with the 
result of the calculation of the residue RES. In the case of the N-R technique the 
residue is: 
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and the value of q for successive iterations will be qn = qn-1 – RES until the residue 
is very small and close to zero (less than 1 x 10-6) 
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Here we make use of the derivative rule: 
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and if we define the following expression as K2: 
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F(q) is the equation to be solved and must equal zero for the appropriate value of 
q. 
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and HF is given by: 
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and f(q) by: 
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We want to solve equation (2) for F(q) = 0 based on the values of the terms in 
equations (3) and (4). 
 
Using the N-R iteration technique we will need the values of df/dq and RES given 
below. 
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Metric Units 
 
The equation for flow vs. static head and friction for a system that provides a 
water jet used as the motive force for an impulse turbine is: 
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where q is the flow rate in liters/min, N the number of nozzle (1 to 4), dN the 
nozzles (0.25 to 1) diameter in millimeters, H the static head in meters, and HF 
the total friction loss in meters. 
 
The friction loss HF(q) is based on the Darcy/Weisback equation: 
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where vp is the velocity in the pipe in m/s, dp the diameter of the pipe in mm, L 
the length of the pipe in meter and f the friction factor or parameter (non-
dimensional). 
 
The friction parameter is given by the Swamee-Jain equation: 
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where ε is the RMS roughness of the surface in mm, and Re the Reynolds 
number(non-dimensional). 
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where ν is the kinematic viscosity of the fluid, for water it is 1 centiStoke. 
 
Velocity can be expressed as a function of flow: 
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therefore Re is: 
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and the friction  loss HF(q) can then be expressed as: 
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and if we define the following expression as K1: 
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then HF(q) becomes: 
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Normally to solve equation (1) we would create a function I call G and apply the 
the Newton-Raphson iteration technique : 
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however after some trials it became apparent that I could not get a convergence 
for certain values of q and this is because the term HF would sometimes get 
larger than H and this would cause the iteration process to fail. It was suggested 
by a gentleman called Torsten Hennig on the math forum alt.math.undergrad at 
http://mathforum.org/kb/forum.jspa?forumID=56 that if I square both sides of 
equation (1) I would eliminate the problem and this turned out to be the solution. 
 
Equation (1) then becomes: 
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and we create a function F: 
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that we can solve using the Newton-Raphson iteration technique. 
 

A value for q will be found that will converge if we modify the initial value with the 
result of the calculation of the residue RES. In the case of the N-R technique the 
residue is: 
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and the value of q for successive iterations will be qn = qn-1 – RES until the residue 
is very small and close to zero (less than 1 x 10-6) 
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Here we make use of the derivative rule: 
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and if we define the following expression as K2: 
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F(q) is the equation to be solved and must equal zero for the appropriate value of 
q. 
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and f(q) by: 
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We want to solve equation (2) for F(q) = 0 based on the values of the terms in 
equations (3) and (4). 
 
Using the N-R iteration technique we will need the values of df/dq and RES given 
below. 
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